

Journal of Organometallic Chemistry 511 (1996) 85-91

Basekatalysierte Hydrierung von Methylchlortri- und -tetrasilanen mit Trialkylstannanen zu Methylchlorwasserstofftri- und -tetrasilanen

U. Herzog^a, E. Brendler^b, G. Roewer^a

^a Institut für Anorganische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Straße 29, D-09596 Freiberg / Sa., Germany
 ^b Institut für Analytische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Straße 29, D-09596 Freiberg / Sa., Germany

Eingegangen den 23. Juni 1995; in revidierter Form den 6. September 1995

Abstract

The Lewis-base catalysed hydrogenation of methylchlorodisilanes with trialkylstannanes is also applicable to higher methylchlorooligosilanes without cleavage of the Si-Si bonds. In this way it was possible to prepare methylchlorohydrogentri- and tetrasilanes. Using trisilanes with a > SiClMe middle group the first hydrogenation takes place exclusively at this silicon atom under formation of a > SiHMe group.

By hydrogenation with trialkylstannanes it is possible to modify the methylchlorooligosilanes obtained by the disproportionation of methylchlorodisilanes into precursors for polymers. With Me₃SnH as hydrogenation agent the Me₃SnCl formed can easily be removed and re-used (E. Hengge, Ch. Grogger, F. Uhlig, G. Roewer, U. Herzog and U. Pätzold, *Monatsh. f. Ch.*, 126 (1995) 549).

Zusammenfassung

Die Lewis-basekatalysierte Hydrierung von Methylchlordisilanen mit Trialkylstannanen läßt sich auch auf höhere Methylchloroligosilane übertragen, ohne daß dabei Si-Si-Bindungsspaltung auftritt. Auf diesem Wege gelang die Darstellung von Methylchlorwasserstofftriund -tetrasilanen. Bei der Hydrierung von Trisilanen mit einer mittelständigen > SiClMe-Gruppierung wird zunächst ausschließlich diese zu einer > SiHMe-Gruppe hydriert.

Durch die Hydrierung mit Trialkylstannanen können aus den z. B. durch Disproportionierungen von Methylchlordisilanen zugänglichen Methylchloroligosilanen günstig Synthesebausteine für Polymere gewonnen werden. Bei Einsatz von Me₃SnH läßt sich das gebildete Me₃SnCl zurückgewinnen und ist damit wiederverwendbar (E. Hengge, Ch. Grogger, F. Uhlig, G. Roewer, U. Herzog and U. Pätzold, *Monatsh. f. Ch.*, 126 (1995) 549).

Keywords: Silicon; Trisilanes; Tetrasilanes; Lewis-base catalysed hydrogenation; Stannane

1. Einleitung

Tri- oder Tetrasilane, die neben der Si-CH₃-Gruppierung simultan sowohl Si-H, als auch Si-Cl-Bindungen aufweisen, sind bisher nicht beschrieben. Durch Hydrierung der entsprechenden Methylchloroligosilane mit LiAlH₄ in einem geeigneten Ether wurden bisher immer die vollständig hydrierten Methylwasserstoffoligosilane erhalten. So konnten auf diesem Wege z. B. SiHMe₂-SiMe₂-SiHMe₂, SiMe(SiHMe₂)₃ und SiH-Me₂-SiHMe-SiHMe₂ aus den entsprechenden Methylchlortri-bzw.-tetrasilanen dargestellt werden [1,2].

Vor kurzem zeigten wir, daß durch Lewis-basekatalysierte Hydrierung von Methylchlordisilanen mit Bu $_3$ SnH direkt Gemische partiell hydrierter Disilane erhalten werden können. Bei der Hydrierung von SiCl₂Me-SiCl₂Me bildete sich, je nach gewähltem Katalysator, ausschließlich oder bevorzugt die unsymmetrisch zweifach hydrierte Verbindung SiH₂Me-SiCl₂Me [3]:

$$(SiCl_2Me)_2 + 2R_3SnH \xrightarrow{-2R_3SnCl} SiH_2Me - SiCl_2Me$$
(1)

(neben SiHClMe-SiCl₂Me, $(SiHClMe)_2$,

 $SiHClMe-SiH_2Me$, $(SiH_2Me)_2$)

Neben der zweckmäßigen Wahl des Katalysators ergeben sich zusätzliche Chancen für die Erhöhung der Ausbeute an Verbindungen mit SiHClMe-Gruppen auch aus der Variation des Organostannans. Tabelle 1 zeigt die Ergebnisse der Hydrierungen mit Bu₃SnH, Me₃SnH,

Tabelle 1

Stannan	Katalysator	Anteil an SiHClMe- Gruppen	Gehalt an SiHClMe– SiHClMe
Bu ₃ SnH	Ph ₃ P		
	[Ph ₃ MeP]I	16%	4%
Me ₃ SnH	Ph ₃ P	32%	12%
	[Ph, MeP]I	30%	10%
Ph ₃ SnH	Ph ₃ P	-	
	[Ph, MeP]I		_
Bu ₂ SnH ₂	Ph ₃ P	_	_
	[Ph ₃ MeP]I	5%	

 Ph_3SnH und Bu_2SnH_2 (jeweils für das Einsatz-Molverhältnis 2 Sn-H: 1 SiCl₂Me-SiCl₂Me).

Die besten Resultate konnten dabei mit Me_3SnH erzielt werden. Die beiden verwendeten Katalysatoren lieferten mit Me_3SnH ein sehr ähnliches Produktspektrum, so daß beide gleichermaßen geeignet sind.

Die Möglichkeiten zur regioselektiven Steuerung der Si-Cl-Gruppen-Hydrierung wurden am Beispiel einiger Methylchloroligosilane untersucht.

Dabei läßt sich eine ganze Palette von Methylchlorwasserstoffoligosilanen darstellen. Das Mengenverhältnis der einzelnen Hydrierprodukte ist durch die Wahl des Katalysators, des verwendeten Stannans sowie des Molverhältnisses Stannan: Methylchloroligosilan gezielt beeinflußbar, zum Teil sind sogar bestimmte partiell hydrierte Produkte selektiv darstellbar.

Die so isolierbaren Methylchlorwasserstoffoligosilane, vor allem die Hydrierprodukte des durch Disproportionierung von $(SiCl_2Me)_2$ leicht auch in größerer Menge isolierbaren Tetrasilans SiMe $(SiCl_2Me)_3$ stellen geeignete Synthesebausteine für Polymeraufbaureaktionen zu reaktiven Polymeren dar.

2. Ergebnisse und Diskussion

Für die Versuche wurden die Methylchlortrisilane SiClMe₂-SiMe₂-SiClMe₂ (1), SiClMe₂-SiClMe-SiClMe₂ (2) und SiCl₂Me-SiClMe-SiCl₂Me (3) sowie die verzweigten Tetrasilane SiMe(SiClMe₂)_n(SiMe₃)_{3-n} (n = 1, 2, 3) (4) und SiMe(SiCl₂Me)₃ (5) eingesetzt.

Die Identifizierung und quantitative Bestimmung der gebildeten Hydrierprodukte erfolgte mittels²⁹Si-NMR-Spektroskopie, unterstützt durch die Auswertung der ¹H-NMR-Spektren. Die gefundenen NMR-Daten sind in den Tabellen 2a-c zusammengestellt.

Tabelle 2a

NMR-Daten der Methylchlorwasserstofftrisilane (chemische Verschiebungen in ppm und Kopplungskonstanten in Hz)

Verbindunge	δ_{Si}	$\delta_{\rm H}$ SiMe/ ${}^{3}J_{\rm HH}$	$\delta_{\rm H}$ SiH/ ¹ J _{SiH}
$\overline{\text{Si}^{A}\text{ClMe}_{2}-\text{Si}^{B}\text{Me}_{2}-\text{Si}^{A}\text{ClMe}_{2}}$	A: 25,17	0,440	
	B: −43,79	0,193	
$Si^{A}HMe_{2}-Si^{B}Me_{2}-Si^{C}ClMe_{2}$	A: -37,32	0,159/4,58	3,92/-181
1 1 1	B: −45,40	0,171	${}^{2}J_{\rm Si^{A}H}$: 6,8 b
	C: 26,34	0,422	³ J _{Si^H} : 3,4 ^b
$Si^{A}HMe_{2}-Si^{B}Me_{2}-Si^{A}HMe_{2}$	A: - 36,72	0,153/4,58	3,92/-174
	B: −47,52	0,158	${}^{2}J_{\rm{Si}^{B}H}$: 6,2 b
			${}^{3}J_{\rm Si^{B}H}$: 3,1 b
Si ^A ClMe ₂ -Si ^B ClMe-Si ^A ClMe ₂	A: 19,48	0,498; 0,517 ^a	-
2 2	B: −0,68	0,589	
Si ^A ClMe ₂ -Si ^B HMe-Si ^A ClMe ₂	A: 24,97	0,486; 0,494 ^a	
	B : $-68,42$	0,223/5,25	3,52/-178
Si ^A HMe ₂ -Si ^B HMe-Si ^C ClMe ₂	A: - 37,77	0,183/4,22	3,93/-185
	B: -70,73	0,2	3,37/-174
	C: 26,49	0,475	
Si ^A HMe ₂ -Si ^B HMe-Si ^A HMe ₂	A: -37,29	0,147/4,47	3,93/-174
2 2	B : - 73,48	0,2	3,29/-164
Si ^A Cl ₂ Me-Si ^B ClMe-Si ^A Cl ₂ Me	A: 24,12	0,988	
	B: -4,87	0,82	
Si ^A Cl ₂ Me-Si ^B HMe-Si ^A Cl ₂ Me	A: 31,26		
2	B: -60,34		
Si ^A HClMe-Si ^B HMe-Si ^C Cl ₂ Me	A: 0,53		
2	B: -63,83		
	C: 33,44		
Si ^A H ₂ Me-Si ^B HMe-Si ^C Cl ₂ Me	A: -66,3		
	B: -66,3		
	C: 35,49		
Si ^A H ₂ Me-Si ^B HMe-Si ^A H ₂ Me	A: -64,83	0,11 [6]	3,76/-186 [5]
	B: -75,82	0,11 [6]	3,58 [6]

^a Die beiden Me-Gruppen an Si^A sind diastereotop mit unterschiedlicher chem. Versch.

^{b 2}J_{SiH} und ³J_{SiH} sind im Spektrum nur aufgelöst, wenn sie zufällig ganze Vielfache bilden.

Tabelle 2b NMR-Daten der Methylchlorwasserstofftetrasilane SiMe(SiClMe₂)_n-(SiHMe₂)₌(SiMe₃)_{3=n=n}

Verbindung	$\delta_{\rm Si}/{}^1J_{\rm SiSi}$
$\overline{\text{Si}^{A} \text{Me}(\text{Si}^{B} \text{ClMe}_{2})(\text{Si}^{C} \text{Me}_{3})_{2}}$	A: -83,56
2 9 2	B: 29,79
	C: -12,66/63
$Si^{A}Me(Si^{B}HMe_{2})(Si^{C}Me_{3})_{2}$	A: -88,24
	B: - 34,8
	C: -12,28
$Si^{A}Me(Si^{B}ClMe_{2})_{2}(Si^{C}Me_{3})$	A: -79,78
	B: 28,16/67
	C: -12,56/63
$Si^{A}Me(Si^{B}ClMe_{2})(Si^{C}HMe_{2})(Si^{D}Me_{3})$	A: -83,75
	B: 29,47
	C: -35,41
_	D: -12,43
$Si^{A}Me(Si^{B}HMe_{2})_{2}(Si^{C}Me_{3})$	A: -88,38
	B: -34,91/61
	C: -12,16
$Si^{A}Me(Si^{B}ClMe_{2})_{3}$	A: -76,25
	B: 26,63/70[2]
$Si^{A}Me(Si^{B}ClMe_{2})_{2}(Si^{C}HMe_{2})$	A: -79,97
	B: 27,80/69
	C: -35,76
$Si^{A} Me(Si^{B}ClMe_{2})(Si^{C}HMe_{2})_{2}$	A: -83,97
	B: 29,09
	C: -35,37
$Si^{A}Me(Si^{P}HMe_{2})_{3}$	A: -88,56
	B: -34,8/62[2]

Tabelle 2c NMR-Daten der Hydrierprodukte von 5

2.1. Hydrierung von 1,3-Dichlorhexamethyltrisilan (1)

Die Hydrierung von 1 mit Me₃SnH im Molverhältnis 1:1 lieferte SiHMe₂-SiMe₂-SiClMe₂ in 67%-iger Ausbeute neben unumgesetztem 1 und der zweifach hydrierten Verbindung (SiHMe₂)₂SiMe₂. Bei Versuchen mit einem eingestellten Molverhältnis 1: Me₃SnH = 1:2 entstand ausschließlich (SiHMe₂)₂ SiMe₂. Diese Ergebnisse decken sich mit den Resultaten der Hydrierung von SiClMe₂-SiClMe₂, welches analog bei Hydrierung mit Stannanen im Molverhältnis 1:1 in etwa 60-65%-iger Ausbeute SiHMe₂-SiClMe₂

2.2. Hydrierung von 1,2,3-Trichlorpentamethyltrisilan(2)

Bei der Umsetzung von 2 mit Me_3SnH im Molverhältnis 1:1 entstand ausschließlich das am mittleren Siliciumatom hydrierte Produkt SiClMe₂-SiHMe-SiClMe₂ (2a). Es ist auf diesem Wege leicht rein erhältlich.

Da die Hydrierreaktion, wie bereits in [3] gezeigt, basekatalysiert abläuft, beweist dieses Hydrierergebnis, daß die Akzeptorstärke des mittleren Siliciumatoms deutlich größer als die der äußeren ist. Untersuchungen

Verbindung	Abk.	$\delta_{\rm Si}/{}^{1}J_{\rm SiSi}$	$\delta_{\rm H}$ SiMe/ $^{3}J_{\rm HH}$	δ _H SiH	J _{SiH}
$\overline{\text{Si}^{\text{A}} \text{Me}(\text{Si}^{\text{B}} \text{Cl}_{2} \text{Me})_{3}}$	A000	A: -63,40	0,455		
• •		B: 31,04/86,4	0,904		
$Si^{A} Me(Si^{B}Cl_{2}Me)_{2}(Si^{C}HClMe)$	A100	A: -66,95	0,410		
2 2		B : 32,84	0,879		
		C: 1,24	0,666/4,06	5,120	- 225
$Si^{A}Me(Si^{B}Cl_{2}Me)(Si^{C}HClMe)_{2}$	A110	A: - 71,50	0,383		
		B: 34,32	0,86		
		C: 2,39		5,1	- 222
$Si^{A}Me(Si^{B}Cl_{2}Me)_{2}(Si^{C}H_{2}Me)$	A200	A: -68,84	0,375		
		B: 34,66/82,2	0,844		
		C: -64,87	0,283/4,86	3,77	- 194
Si ^A Me(Si ^B HClMe) ₃	A111	A: -77,1			
		B: 3,58			
Si ^A Me(Si ^B Cl ₂ Me)(Si ^C HClMe)	A210	A: -74,45	0,342		
$(Si^{D}H_{2}Me)$		B: 36,55	0,826		
-		C: 3,85	0,623/4,10	5,1	-219
		D: -64,95	0,267	3,8	- 195
$Si^{A} Me(Si^{B} HClMe)_{2}(Si^{C} H_{2} Me)$	A211	A: -81,04			
1 1		B: 5,10			
		C: -65,0			
$Si^{A} Me(Si^{B}Cl_{2}Me)(Si^{C}H_{2}Me)_{2}$	A220	A: - 78,41	0,314		
		B: 38,46	0,798		
		C: -63,78/61,8	0,202/4,8	3,8	- 192
$Si^{A} Me(Si^{B} HClMe)(Si^{C} H_{2} Me)_{2}$	A221	A: - 86,00			
		B: 6,70			
		C: -63,70			
$Si^{A}Me(Si^{B}H_{2}Me)_{3}$	A222	A: -91,50			
2 9		B: -62,64/61,8			- 184
		•			[6]

von Kummer et al. [4] über die Stabilität von 2,2'-Bipyridyl-Addukten von Methylchlormono- und -disilanen zeigten, daß bereits eine SiMe₃-Gruppe einen ähnlich stark elektronenziehenden Effekt bewirkt wie ein Chlorsubstituent. Die Kristallstruktur von Si₃Cl₈ · phen (phen = 1,10-Phenanthrolin) [5], die die Koordination des Liganden an der mittleren $-SiCl_2$ -Gruppe offenbart, beweist somit deren höhere Akzeptorstärke im Vergleich zu den endständigen SiCl₃-Gruppen.

Die Hydrierung von 2 mit Me_3 SnH im Molverhältnis 1:2,5 lieferte schließlich ein etwa äquimolares Gemisch aus SiHMe₂-SiHMe-SiClMe₂ und SiHMe₂-SiHMe-SiHMe₂.

2.3. Hydrierung von 1,1,2,3,3-Pentachlortrimethyltrisilan (3)

Analog zur Umsetzung von 2 mit Stannanen im Molverhältnis 1: 1 ergab auch 3 zunächst ausschließlich das am mittleren Siliciumatom hydrierte Produkt SiCl₂Me-SiHMe-SiCl₂Me 3a. Beim Ansatz mit dem Molverhältnis 1:2 entstanden neben 3a auch die zweifach und die dreifach hydrierten Verbindungen Si-HCIMe-SiHMe-SiCl₂Me und SiH₂Me-SiHMe-SiCl₂Me. Hydrierung im Molverhältnis 1:5 führte zum vollständig hydrierten Produkt SiH₂Me-SiHMe-SiH₂Me, welches Hengge et al. bereits bei der Cp₂ZrMe₂-katalysierten Dehydropolymerisation von 1,2-Dimethyldisilan mittels²⁹Si-NMR nachweisen konnten [6].

2.4. Hydrierung von Bis-(chlordimethylsilyl)-(trimethylsilyl)-methylsilan (4) im Gemisch mit (Chlordimethylsilyl)-bis-(trimethylsilyl)-methylsilan (4a) und Tris-(chlordimethylsilyl)-methylsilan (4b)

Bei der Chlorierung von SiMe(SiMe₃)₃ mit Acetylchlorid und Aluminiumchlorid im Molverhältnis 1:2:2 entstand ein Produktgemisch. Es enthielt hauptsächlich SiMe(SiClMe₂)₂(SiMe₃) (4) neben jeweils ca. 15 Mol% SiMe(SiClMe₂)(SiMe₃)₂ (4a) und dem bereits bekannten SiMe(SiClMe₂)₃ (4b) [2].

Die Hydrierung dieses Produktes mit Me_3SnH im Molverhältnis 1:1 führte zu SiMe(SiClMe₂)(SiHMe₂)-(SiMe₃). Das im Ausgangsstoff enthaltene **4b** wurde dabei zu SiMe(SiClMe₂)₂(SiHMe₂) und SiMe(SiCl-Me₂)(SiHMe₂)₂ hydriert. **4a** war noch unverändert vorhanden.

Die Umsetzung mit einem geringen Überschuß an Me₃SnH lieferte schließlich ein Gemisch der vollständig hydrierten Tetrasilane SiMe(SiHMe₂)(SiMe₃)₂, SiMe-(SiHMe₂)₂(SiMe₃) und SiMe(SiHMe₂)₃.

Aus dem Vergleich der relativen Reaktivitäten der drei Ausgangsstoffe resultiert, daß 4b deutlich leichter hydriert wird als 4, dieses wiederum aber reaktiver ist als 4a. Die Abstufung läßt sich damit erklären, daß der Elektronenzug von Chlorsubstituenten auch über längere Silylketten wirksam ist.

2.5. Hydrierung von Tris-(dichlormethylsilyl)-methylsilan (5)

5 wurde zunächst mit Bu₃SnH als Hydriermittel umgesetzt. In Analogie zu den Ergebnissen der Hydrierung von SiCl₂Me-SiCl₂Me bildeten sich auch in diesem Fall bei den gewählten Einsatz-Molverhältnissen $5:Bu_3SnH = 1:2$ bzw. 1:4 ganz überwiegend (jeweils bis etwa 60 Mol%) die Verbindungen:

$$SiMe(SiH_2Me)(SiCl_2Me)_2$$
-bzw.

 $SiMe(SiH_2Me)_2$ (SiCl₂Me)

(keine SiHClMe-Gruppen!)

Beim Molverhältnis 1:6 entstand das vollständig hydrierte SiMe(SiH₂Me)₃, dessen ²⁹Si-chemische Verschiebungen bereits veröffentlicht worden sind [6]. Mit Ma SpH arreh 5 dagagen Dradukterreische die

Mit Me₃SnH ergab 5 dagegen Produktgemische, die

Abb. 1. Reaktionsschema der Hydrierung der Methylchlortrisilane 1, 2 und 3 mit Trialkylstannanen.

Abb. 2. Hydrierung von SiMe(SiCl₂Me)₃ mit Me₃SnH: Verteilung des Gesamt-SiMe(SiX₂Me)₃ auf die einzelnen Spezies bei verschiedenen Hydrierungsgraden (Bezeichnung siehe Tabelle 2c).

auch größere Anteile an Verbindungen mit einer oder mehreren SiHClMe-Gruppen enthielten:

 $(SiHClMe)SiMe(SiCl_2Me)_2$

 $(SiHClMe)_2SiMe(SiCl_2Me)$

 $(SiHClMe)SiMe(SiCl_2Me) - (SiH_2Me)$

(SiHClMe)₃SiMe

(SiHClMe)₂SiMe(SiH₂Me)

 $(SiHClMe)SiMe(SiH_2Me)_2$

Die Zusammensetzung der Produktgemische bei verschiedenen Molverhältnissen $5:Me_3SnH$ gibt Abb. 2 wieder.

Das gebildete Me_3SnCl ließ sich jeweils zusammen mit dem als Lösungsmittel verwendeten Toluen leicht durch Abkondensieren im Vakuum entfernen.

Abb. 4a-d zeigt die Abhängigkeit der ²⁹Si-chemischen Verschiebungen der einzelnen Silylgruppen des verzweigten Tetrasilans in Korrelation zur Anzahl der Chloratome im Molekül. Dabei ergibt sich nur für die SiCl₂Me-Gruppen ein linearer Zusammenhang, in den sich auch die Verbindungen mit einer oder mehreren SiHClMe-Gruppen einreihen. Für alle anderen Silylgruppen ist eine mehr oder weniger große Trennung bei Verbindungen mit einer unterschiedlichen Anzahl an SiHClMe-Gruppen zu registrieren.

Die gefundenen Abhängigkeiten der ²⁹Si-chemischen Verschiebungen ermöglichen auch genauere Abschätzungen der chemischen Verschiebungen für andere Methylchlorwasserstoffoligosilane.

3. Experimenteller Teil

1,3-Dichlorhexamethyltrisilan (1)

1 wurde durch basekatalysierte Disproportionierung von $SiClMe_2-SiClMe_2$ entsprechend der Vorschrift in [7] synthetisiert.

1,2,3-Trichlorpentamethyltrisilan (2)

Die Darstellung von 2 erfolgte durch Umsetzung von Si_3Me_8 mit Acetylchlorid und Aluminiumchlorid im Molverhältnis 1:3:3 [8].

1,1,2,3,3-Pentachlortrimethyltrisilan (3)

3 entstand bei der basekatalysierten Disproportionierung von $SiCl_2Me-SiCl_2Me$ [7] und wurde aus dem Oligosilangemisch durch fraktionierte Destillation im Vakuum abgetrennt.

Bis-(chlordimethylsilyl)-(trimethylsilyl)-methylsilan (4)

4 entstand im Gemisch mit jeweils 15 Mol% Chlordimethylsilyl-bis-(trimethylsilyl)-methylsilan und Tris-(chlordimethylsilyl)-methylsilan durch Chlorierung von SiMe(SiMe₃)₃ mit Acetylchlorid und Aluminiumchlorid im Molverhältnis 1:2:2 bei 20°C (2 h

Abb. 3. Reaktionsschema der Hydrierung der Methylchlortetrasilane 4, 4b und 5 mit Trialkylstannanen.

Abb. 4. (a), (b): ²⁹Si-chemische Verschiebungen der tertiären SiMe-Gruppe und der SiCl₂Me-Gruppe in Abhängigkeit von der Anzahl Chloratome im Molekül SiMe(SiX₂Me)₃, X = Cl, H. (c), (d): ²⁹Si-chemische Verschiebungen der SiHClMe- und der SiH₂Me-Gruppen in Abhängigkeit von der Anzahl Chloratome im Molekül SiMe(SiX₂Me)₃, X = Cl, H.

Reaktionszeit). Die Isolierung des Produktes erfolgte durch Extraktion der Silane aus dem zähflüssigen Reaktionsgemisch mit Cyclohexan und anschließende fraktionierte Destillation. Das Produkt erstarrt in der Vorlage zu farblosen Kristallen. Kp.: 100–110°C bei 0,6 kPa.

GC-MS: $Si_4Me_9Cl_{(m/e)}$: 282 (M⁺, 2), 267 ($Si_4Me_8Cl_{,11}$), 247 (Si_4Me_9 , 1), 209 ($Si_3Me_6Cl_{,4}$), 189 (Si_3Me_7 , 5), 174 (Si_3Me_6 , 100), 159(Si_3Me_5 , 34), 131 (Si_2Me_5 , 24), 129 (Si_3Me_3 , 18), 116 (Si_2Me_4 , 12), 73 ($SiMe_3$, 95).

Si₄Me₈Cl₂ (m/e): 302 (M⁺, 0,3), 287 (Si₄Me₇Cl₂, 6), 267 (Si₄Me₈Cl, 5), 229 (Si₃Me₅Cl₂, 1), 209 (Si₃Me₆Cl, 22), 194 (Si₃Me₅Cl, 100), 131 (Si₂Me₅, 36), 116 (Si₂Me₄, 12), 73 (SiMe₃, 89).

Si₄Me₇Cl₃ (m/e): 324 (M⁺, 0,5), 309 (Si₄Me₆Cl₃, 2), 287 (Si₄Me₇Cl₂, 6), 229 (Si₃Me₅Cl₂, 78), 209 (Si₃Me₆Cl, 12), 194 (Si₃Me₅Cl, 39), 151 (Si₂Me₄Cl, 26), 131 (Si₂Me₅, 58), 116 (Si₂Me₄, 26), 93 (SiMe₂Cl, 26), 73 (SiMe₃, 100). (Jeweils die Intensitäten der intensivsten Isotopenpeaks).

Tris-(dichlormethylsilyl)-methylsilan (5)

5 konnte ebenfalls durch basekatalysierte Disproportionierung von $SiCl_2Me-SiCl_2Me$ erhalten werden. Es stellt dabei das Hauptprodukt der gebildeten Oligosilane dar und läßt sich durch fraktionierte Destillation im Hochvakuum abtrennen [7].

Hydrierungen

Für alle Hydrierversuche mit den Verbindungen 1–5 wurden Ph_3MePI als Katalysator und Toluen als Lösungsmittel benutzt. Die Reaktionszeit betrug 2 Tage bei Raumtemperatur, wobei das Stannan quantitativ in das Chlorstannan umgewandelt wurde. ¹H-NMR-Spektren belegten dies. Me₃SnH wurde vor den Umsetzungen mit 1–5 frisch aus Me₃SnCl durch Hydrierung mit LiAlH₄ in Diglyme dargestellt. Bu₃SnH war kommerziell erhältlich. Bu_2SnH_2 sowie Ph_3SnH wurden nach Literaturvorschriften [9,10] aus den entsprechenden Chlorstannanen durch Hydrierung mit LiAlH₄ synthetisiert. Ihre Reinheit wurde mittels ¹¹⁹Sn-NMR Spektroskopie überprüft.

NMR-Spektroskopie

Die ¹H-, ²⁹Si- und ¹¹⁹Sn-NMR-Spektren wurden an einem Gerät vom Typ BRUKER MSL 300 aufgenommen. Die Eichung erfolgte für ¹H und ²⁹Si intern mit TMS, für ¹¹⁹Sn extern mit Me₄Sn.

GC-MS

GC-MS-Messungen wurden an einem HEWLETT PACKARD 5971 durchgeführt. Ionisierungsenergie: 70 eV. Säule: 30 m × 0,25 mm × 0,25 μ m gepackt mit Phenylmethylpolysiloxan. Temperatur: Injector, Detector: 280°C, Säule: 100 \rightarrow 280°C (10°C min⁻¹). Fluß: He 0,5 ml min⁻¹.

Literatur

- [1] K. Schenzel und K. Hassler, Spectrochim. Acta, 50A (1994) 127.
- [2] G. Kollegger und K. Hassler, J. Organomet. Chem., 485 (1995) 233.
- [3] U. Herzog, G. Roewer und U. Pätzold, J. Organomet. Chem., 494 (1995) 143.
- [4] D. Kummer, A. Balkir und H. Köster, J. Organomet. Chem., 178 (1979) 29.
- [5] D. Kummer, S.C. Chaudhry, W. Depmeier und G. Mattern, *Chem. Ber.*, 123 (1990) 2241.
- [6] E. Hengge und M. Weinberger, J. Organomet. Chem., 433 (1992) 21.
- [7] U. Herzog, R. Richter, E. Brendler und G. Roewer, J. Organomet. Chem., 507 (1996) 221.
- [8] H. Sakurai, T. Watanabe und M. Kumada, J. Organomet. Chem., 7 (1967) P15.
- [9] F. Greene und H.N. Lowry, J. Org. Chem., 32 (1967) 882.
- [10] J. Dufermont und J.C. Maire, J. Organomet. Chem., 7 (1967) 415.